partb4 completed, refactored code
This commit is contained in:
parent
9ebd727ca1
commit
8cb005de77
3 changed files with 102 additions and 29 deletions
36
partb2.py
36
partb2.py
|
@ -1,22 +1,30 @@
|
|||
import re
|
||||
import argparse
|
||||
|
||||
def read_document(path):
|
||||
'''Reads a file when provided with its path, and returns a string
|
||||
containing the lines of the file.'''
|
||||
file_given = open(path)
|
||||
f = ""
|
||||
for line in file_given:
|
||||
f += line + " "
|
||||
file_given.close()
|
||||
return f
|
||||
|
||||
def apply_preprocessing(f):
|
||||
'''Removes non-alphabetic characters, replaces all whitespace characters
|
||||
with a single whitespace, and changes all uppercase characters to
|
||||
lowercase'''
|
||||
f = re.sub(r'[^a-zA-Z\s]', r'', f)
|
||||
f = re.sub(r'\s+', r' ', f)
|
||||
f = f.lower()
|
||||
return f
|
||||
|
||||
# parse input arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('path_to_file', help = 'path to the csv file')
|
||||
parser.add_argument('path_to_file', help = 'path to document')
|
||||
args = parser.parse_args()
|
||||
|
||||
# open file, add all lines to a single string
|
||||
file_given = open(args.path_to_file)
|
||||
f = ""
|
||||
for line in file_given:
|
||||
f += line + " "
|
||||
file_given.close()
|
||||
|
||||
# remove non-alphabetic characters, replace all whitespace characters with a
|
||||
# single whitespace, and change all uppercase characters to lowercase
|
||||
f = re.sub(r'[^a-zA-Z\s]', r'', f)
|
||||
f = re.sub(r'\s+', r' ', f)
|
||||
f = f.lower()
|
||||
|
||||
f = read_document(args.path_to_file)
|
||||
f = apply_preprocessing(f)
|
||||
print(f)
|
||||
|
|
31
partb3.py
31
partb3.py
|
@ -4,23 +4,29 @@ import nltk
|
|||
import os
|
||||
import argparse
|
||||
|
||||
def read_document(path):
|
||||
'''Reads a file when provided with its path, and returns a string
|
||||
containing the lines of the file.'''
|
||||
file_given = open(path)
|
||||
f = ""
|
||||
for line in file_given:
|
||||
f += line + " "
|
||||
file_given.close()
|
||||
return f
|
||||
|
||||
def apply_preprocessing(f):
|
||||
'''Applies preprocessing from partb2 to a string f.'''
|
||||
'''Removes non-alphabetic characters, replaces all whitespace characters
|
||||
with a single whitespace, and changes all uppercase characters to
|
||||
lowercase'''
|
||||
f = re.sub(r'[^a-zA-Z\s]', r'', f)
|
||||
f = re.sub(r'\s+', r' ', f)
|
||||
f = f.lower()
|
||||
return f
|
||||
|
||||
def doc_to_str(doc):
|
||||
'''Returns a string with the contents of a .txt file'''
|
||||
f = ""
|
||||
for line in doc:
|
||||
f += line + " "
|
||||
return f
|
||||
|
||||
# parse input arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('keywords', nargs = '+', help = 'keywords to search for (1-5 keywords accepted)')
|
||||
parser.add_argument('keywords', nargs = '+', help = 'keywords to search for \
|
||||
(1-5 keywords accepted)')
|
||||
args = parser.parse_args()
|
||||
if len(args.keywords) > 5:
|
||||
print("Too many keywords.")
|
||||
|
@ -28,7 +34,8 @@ if len(args.keywords) > 5:
|
|||
|
||||
# load document IDs from csv
|
||||
df = pd.read_csv('partb1.csv', encoding = 'ISO-8859-1')
|
||||
doc_ids = pd.Series(data = df.documentID.tolist(), index = df.filename.tolist())
|
||||
doc_ids = pd.Series(data = df.documentID.tolist(), \
|
||||
index = df.filename.tolist())
|
||||
documents = doc_ids.index.tolist()
|
||||
matched_doc_ids = []
|
||||
|
||||
|
@ -36,9 +43,7 @@ os.chdir(os.getcwd() + '/cricket')
|
|||
|
||||
# search through each document for the keywords
|
||||
for doc in documents:
|
||||
curr = open(doc)
|
||||
f = doc_to_str(curr)
|
||||
curr.close()
|
||||
f = read_document(doc)
|
||||
f = apply_preprocessing(f)
|
||||
|
||||
tokens = nltk.word_tokenize(f)
|
||||
|
|
64
partb4.py
64
partb4.py
|
@ -1,6 +1,66 @@
|
|||
## Part B Task 4
|
||||
import re
|
||||
import pandas as pd
|
||||
import os
|
||||
import sys
|
||||
import nltk
|
||||
from nltk.stem.porter import *
|
||||
import argparse
|
||||
|
||||
def read_document(path):
|
||||
'''Reads a file when provided with its path, and returns a string
|
||||
containing the lines of the file.'''
|
||||
file_given = open(path)
|
||||
f = ""
|
||||
for line in file_given:
|
||||
f += line + " "
|
||||
file_given.close()
|
||||
return f
|
||||
|
||||
def apply_preprocessing(f):
|
||||
'''Removes non-alphabetic characters, replaces all whitespace characters
|
||||
with a single whitespace, and changes all uppercase characters to
|
||||
lowercase'''
|
||||
f = re.sub(r'[^a-zA-Z\s]', r'', f)
|
||||
f = re.sub(r'\s+', r' ', f)
|
||||
f = f.lower()
|
||||
return f
|
||||
|
||||
# parse input arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('keywords', nargs = '+', help = 'keywords to search \
|
||||
for (1-5 keywords accepted)')
|
||||
args = parser.parse_args()
|
||||
if len(args.keywords) > 5:
|
||||
print("Too many keywords.")
|
||||
quit()
|
||||
|
||||
# load document IDs from csv
|
||||
df = pd.read_csv('partb1.csv', encoding = 'ISO-8859-1')
|
||||
doc_ids = pd.Series(data = df.documentID.tolist(), \
|
||||
index = df.filename.tolist())
|
||||
documents = doc_ids.index.tolist()
|
||||
matched_doc_ids = []
|
||||
|
||||
# change directory to get cricket data
|
||||
os.chdir(os.getcwd() + '/cricket')
|
||||
|
||||
# search through each document for the keywords
|
||||
porter_stemmer = PorterStemmer()
|
||||
|
||||
for doc in documents:
|
||||
f = read_document(doc)
|
||||
f = apply_preprocessing(f)
|
||||
|
||||
# tokenise the document, remove stop words
|
||||
word_list = nltk.word_tokenize(f)
|
||||
|
||||
# use the Porter stemmer to add stem words to the word list
|
||||
for word in word_list:
|
||||
stemmed_word = porter_stemmer.stem(word)
|
||||
if stemmed_word not in word_list:
|
||||
word_list.append(stemmed_word)
|
||||
|
||||
# add document ID if all keywords are in this new word list
|
||||
if all(keyword in word_list for keyword in args.keywords):
|
||||
matched_doc_ids.append(doc_ids.get(doc))
|
||||
|
||||
print(matched_doc_ids)
|
||||
|
|
Loading…
Reference in a new issue